Archiv der Online-Vorlesungsverzeichnisse

Kommentar ausblenden

OC 1: Bachelor Chemie, Diplom Biochemie (Grundstudium), Lehramt Chemie

21 201a
V -
Organische Chemie I - Grundlagen der Organischen Chemie ; Mo, Fr 10.00-12.00 - Takustr. 3, Hörsaal (16.10.) Christian Stark
Studiengände:
Bachelor Chemie (2. Semester)
Diplom Biochemie (2. Semester)
Lehramt Chemie (3. Semester)

Leistungspunkte, Zeitaufwand:
Vorlesung: 6.0 LP (21201a, 15 x 4 Stunden
Übungen: 1.0 LP (21201b), 7 x 2 Stunden

Überprüfung des Lehrfortschritts (während der Veranstaltung):
Aktive Teilnahme an Vorlesungen und Übungen
Die Übungen finden in kleinen Gruppen von 15 bis 25 Teilnehmern statt

Leistungskontrolle:
2 dreistündige Klausuren in der Mitte und am Ende des Semesters; eine Wiederholungsklausur zum Gesamtstoff wird am Beginn des nächsten Semesters angeboten;
Das erfolgreiche Bestehen der Klausur ist Voraussetzung zur Teilnahme am organisch-chemischen Praktikum I

Zielsetzungen:
Am Ende dieser Vorlesung sollen die Teilnehmer mit den Grundlagen der Organischen Chemie vertraut sein. Behandelt werden deshalb Nomenklatur, Grundbegriffe, Stoffklassen, funktionelle Gruppen, Naturstoffklassen, die wichtigsten Reaktionstypen und ihre Mechanismen, die Bedeutung organischer Verbindungen in Industrie, Technik und Umwelt, erste Einführung in spektroskopische Methoden.

Themenverzeichnis:
Historische Entwicklung der chemischen Teilgebiete, Chemische Bindung, Struktur, Analyse, Alkane, Cycloalkane, Alkene, Alkine, Halogenverbindungen, Alkohole, Ether, Thioalkohole, Thioether, Amine, Aldehyde, Ketone, Carbonsäuren, Aromatische Kohlenwasserstoffe, Spektroskopische Methoden, Aromaten mit funktionellen Gruppen, Hydroxycarbonsäuren und Oxocarbonsäuren, Hydroxyaldehyde, Hydroxyketone, Kohlenhydrate, Aminosäuren, Peptide, Proteine, Heterocyclen, Nucleinsäuren

Es werden für die Stoffklassen und Reaktionstypen charakteristische Experimente vorgestellt!

Weitere Information:
http://userpage.chemie.fu-berlin.de/~tlehmann/gp/oc1.shtml
 
21 201b
Ü -
Übungen zu 21 201a ; Termine werden in der Vorlesung vereinbart. (16.10.) Christian Stark
u. Mitarb.
Informationen siehe LV-Nr. 21 201a, Organische Chemie I: Grundlagen der Organischen Chemie
(http://www.fu-berlin.de/vorlesungsverzeichnis/ws0304/bio-chem-pharm/001003003002001001.shtml )
 
21 202a
V -
Organische Chemie II - Organische Reaktionen und ihre Mechanismen ; Di, Do 8.00-10.00, Mi 10.00-12.00 - Takustr. 3, Hörsaal (17.10.) Christoph Schalley,
Burkhard Kirste
Studiengände:
Bachelor Chemie (3. Semester)
Diplom Biochemie (3. Semster)
Diplom Chemie (4. Semester)

Leistungspunkte/Zeitaufwand:
Vorlesung: 9.0 LP, 6 Stunden/Woche (6 SWS)
Übungen: 2.0 LP, 2 Stunden/Woche (2 SWS)

Überprüfung des Lehrfortschritts (während der Veranstaltung):
Aktive Teilnahme an den Übungen

Leistungskontrolle:
3 dreistündige Klausuren

Zielsetzungen:
Erwerb eines Verständnisses für Ablauf und Mechanismus typischer organisch-chemischer Reaktionen, Vermittlung der theoretischen Grundlagen zum organisch-chemischen Grundpraktikum

Zusammenfassung der Lehrgegenstände:
1. Einleitung und allgemeine Gesichtspunkte
Reaktivität und Selektivität, kinetische/thermodynamische Reaktionskontrolle, induktive und mesomere Effekte, Enantiomere/Diastereomere, Enantioselektivität/Diastereoselektivität

2. Substitutionsreaktionen
Heterolyse, Nucleophile (Reaktivitätsabstufung, Nucleophilie und Basizität), Abgangsgruppen (Reaktivitätsabstufung, gängige Fluchtgruppen, Aktivierung), Struktur von Carbenium- und Onium-Ionen, Mechanismen, Geschwindigkeitsgesetze, Reaktionsprofile, sterische und elektronische Effekte, Konkurrenzreaktionen, Halogen-Nucleophile (Finkelstein-Reaktion, Appel-Reaktion), Sauerstoff- und Schwefel-Nucleophile (Williamson-Ethersynthese, Benzylether-Schutzgruppen, Glycosidierungen), Stickstoff- und Phosphor-Nucleophile (Gabriel-Synthese, Arbuzov-Reaktion), Kohlenstoff-Nucleophile (Kolbe-Nitrilsynthese), Homolyse, Erzeugung von Radikalen, Radikalinitiatoren, Vergleich von Struktur, Hybridisierung mit Carbokationen und Carbanionen, Radikalkettenreaktion, Initiatorzerfall, Kettenstart, Kettenfortpflanzung, Kettenabbruch; Beispiel: Chlorierung von Kohlenwasserstoffen, Funktionalisierung (Benzylische Bromierung, Wohl-Ziegler-Bromierung, Sulfochlorierung, Barton-Reaktion), Umfunktionalisierung (Hunsdiecker-Reaktion, Barton-Decarboxylierung), Defunktionalisierung (Dehalogenierung, Barton-McCombie-Reaktion)

3. Additionsreaktionen
Reaktivität von Olefinen, Bindungsenergien, cis- und trans-Additionen, Halogenwasserstoffaddition, Halogenaddition Reaktionsprofile, Konkurrenzreaktionen, Vergleich der Strukturen der Zwischenstufen, Regiochemie (Markovnikov-Regel), Stereochemie, Hydroborierung, Reaktionsprofil, Halogenhydrinreaktion, Halolactonisierung, Solvomercurierung, Hydroborierung, Dihydroxylierung, Epoxidierung, elektrophile Additionen an Alkine und Cyclopropane, Radikalische Additionen (Beispiel: Bromwasserstoff-Addition, radikalische Polymerisation), Mechanismus, Regiochemie (anti-Markovnikov-Regel); Nucleophile Additionen (Beispiel: Michael-Reaktion): Verweis auf Teil II; Cycloadditionen (Diels-Alder-Reaktion): Verweis auf Teil III

4. Eliminierungen.
(alpha)-, (beta)-, (gamma)-Eliminierungen, syn- und anti-Eliminierungen, E1 –Mechanismus, E1,cb –Mechanismus, E2 –Mechanismus, Vergleich der Reaktionsparameter (Abgangsgruppen, Basen, Temperatur), Konkurrenzreaktionen, Regiochemie (Zaitsev-Regel, Hofmann-Regel, stereoelektronische Effekte, Bredt-Regel, Fürst-Plattner-Regel), Stereochemie (syn-, antiperiplanare Übergangszustände), Entfernung von Fmoc- und Boc-Schutzgruppen, syn-(beta)-H,X-Eliminierungen: Esterpyrolyse, Tshugaev-Reaktion, Cope-Eliminierung, Selenoxidpyrolyse; (beta)-X,Y-Eliminierungen: Wittig-Reaktion, Peterson-Olefinierung, Corey-Winter-Reaktion; a-Eliminierungen (Erzeugung von Carbenen); (gamma)-Eliminierungen (Synthese von Cyclopropanen)

5. Chemie der Carbonylgruppe
Addition an Carbonylgruppe, (alpha)-C-H-Acidität, Keto-Enol Tautomerie, Hydrate, Acetale/Ketale, Thioacetale/Thioketale (Corey-Seebach Synthese), Imine, Aminale, Enamine, Hydrazone (Wolff-Kishner Reduktion), Oxime, Cyanhydrine (Benzoin-Kondensation, Strecker Aminosäuresynthese), 1,4-Addition an (alpha),(beta)-ungesättigte Carbonylverbindungen (Michael Addition), Hydrid aus C-H-Bindungen (reduktive Aminierung nach Leuckart-Wallach, Meerwein-Ponndorf-Verley Reduktion, Cannizzaro Disportionierung), reduktive Kupplungen (Pinakol Kupplung, Acyloin Kondensation, McMurry Kupplung), Baeyer-Villiger Oxidation, Beckmann Umlagerung, Benzilsäure Umlagerung, Nucleophile Substitution via Addition/Eliminierung, H-Brücken, Esterhydrolyse, Esterspaltung, Carbonsäureaktivierung (Säurechloride, Anhydride, Carbodiimidaktivierung, Mitsunobu Reaktion), Kolbe Elektrolyse, Hunsdiecker Abbau thermischer Abbau von(beta)-Ketocarbonsäuren, Carbonsäureabbau über "Acylnitrene"/Isocyanate (Curtius, Hofmann und Lossen Abbau), Carbonsäureaufbau über "Acylcarbene"/Ketene (Wolff Umlagerung, Arndt-Eistert Homologisierung), Ketene, Isocyanate, Nitrile, Isonitrile, C-H-Acidität und pKa-Werte, Enol/Enolaterzeugung, Halogene (Hell-Volhard Zelinskii, Haloform Reaktion), Alkylhalogenide (Darzens Glycidestersynthese, Favorskii Umlagerung), Aldehyde/Ketone (Aldol Addition und Kondensation), Carbonsäurederivate (Claisen Kondensation, Dieckmann Cyclisierung, Knoevenagel Kondensation, Thorpe-Ziegler Cyclisierung), (alpha),(beta)-ungesättigte Carbonylverbindungen (Michael Addition, Robinson Annelierung), Iminium-Ionen (Mannich Reaktion), Enamine (Stork Enamin-Synthese); Erzeugung, Struktur und Reaktivität von Organometallverbindungen: Li, Mg (Grignard), Cu, Zn (Reformatsky-Reaktion); Ylide: Phosphor-Ylide (Wittig Reaktion, Horner-Wadsworth-Emmons Olefinierung), Schwefel-Ylide (Cyclopropanierung/Epoxidierung), C-C-Knüpfungen mit Carbonylverbindungen

6. Oxidation und Reduktion
Definitionen, Oxidationszahlen, Systematik, prinzipielle Oxidations- und Reduktionsmechanismen, Dehydrierung und Cyclodehydrierung, Bildung von Hydroperoxiden, Oxidation aktivierter Methylgruppen zu Carbonyl (Methylaromaten, Riley), Oxidation mit Chromsäure in wässriger Lösung (Estermechanismus nach Westheimer), selektive Oxidation prim. Alkohole zu Aldehyden (PCC u.ä., aktiviertes DMSO: Swern, Pfitzner-Moffatt, TEMPO, Hinweis auf weitere Reagenzien wie Dess-Martin-Reagenz), Oppenauer-Oxidation, Ortho- und para-Chinone aus den betreffenden Hydrochinonen bzw. Aminen, Oxidation von Phenolen mit Fremys Salz, Ozonspaltung, Glycolspaltung, Chromsäure-Abbau, Oxidative Dimerisierung von Phenolen, oxidative Kupplung von Acetylenen (Glaser), Oxidation von Aminen zu Aminoxiden u.a., von Sulfiden zu Sulfoxiden und Sulfonen, von Thiolen zu Disulfiden bzw. Sulfonsäuren, Katalytische Hydrierung, Reduktion mit Diimid, Verweis auf Hydroborierung, Birch-Reduktion, Reduktion von Alkylhalogeniden, Alkoholen und Ethern, Schwefelverbindungen, Reduktion mit komplexen Metallhydriden, selektive Reduktionen zu Aldehyden (Rosenmund, LiAlH(OtBu)3, DIBAL), Reduktion von Carbonyl zu Methylen (Clemmensen, Hinweis auf Wolff-Kishner und Thioketal-Methode), Verweis auf Pinacol-Bildung und Acyloin-Kondensation (-> Teil II: Carbonyle), Reduktion aromatischer Nitroverbindungen

7. Aromaten
Bemerkenswerte Eigenschaften, Delokalisationsenergie, Kriterien der Aromatizität, Übersicht über Aromaten (polycyclische Aromaten, aromatische Heterocyclen, Annulene), pi- und sigma-Komplexe, Wheland-Mechanismus, Halogenierung, Nitrierung, Sulfonierung, Friedel-Crafts-Alkylierung und -Acylierung, I- und M-Effekte, ortho/para-Verhältnis, gezielte Orientierung, Orientierung bei mehrfach substituiertem Benzol, bei polycyclischen Kohlenwasserstoffen und bei heterocyclischen Verbindungen, Nitrosierung, Azokupplung, Chlorsulfonierung, Gattermann-Koch-Reaktion, Gattermann-Reaktion, Vilsmeier-Formylierung, Hydroxyalkylierung, Halogenalkylierung, Fries-Umlagerung, andere Abgangsgruppen als Wasserstoff (ipso-Substitution, Desulfonierung, Umkehrung der Friedel-Crafts-Alkylierung), Nucleophiler A-E-Mechanismus (Meisenheimer-Typ-Komplex), SN1-Mechanismus, Arin-Mechanismus, Phenole aus Halogenaromaten bzw. Sulfonaten, Ziegler-Alkylierung, Tschitschibabin-Reaktion, Umsetzungen von Diazoniumsalzen (Phenolbildung, Austausch gegen Wasserstoff, Schiemann-Reaktion, Sandmeyer-Reaktion)

8. Pericyclische Reaktionen
Diels-Alder-Reaktion als konzertierte [4+2]-Cycloaddition, endo-Regel, Grenzorbital-Wechselwirkungen, weitere Typen von Cycloadditionen ([2+2], [2+3] bzw. dipolar, [2+1]), Konzept der Woodward-Hoffmann-Regeln, Cope- und Claisen-Umlagerung

Themenverzeichnis:
http://userpage.chemie.fu-berlin.de/~tlehmann/gp/oc2.shtml

Literatur
z.B. Vollhardt, Sykes, Organikum
 
21 202b
Ü -
Übungen zu 21 202a ; Mo 8.00-10.00 - Takustr. 3, Hörsaal (23.10.) Christoph Schalley,
Burkhard Kirste
Informationen siehe LV-Nr. 21 202a, Organische Chemie II: Organische Reaktionen und ihre Mechanismen
http://www.fu-berlin.de/vorlesungsverzeichnis/ws0304/bio-chem-pharm/001003003002001001.shtml )
 
21 202c
S -
Kurs zum OC-Praktikum I: Empirische Spektroskopie (für Studierende der Chemie, Chemie mit Lehramtsoption und Biochemie sowie Studierende der Biologie mit Studienziel Diplom und nichtbiologischem Nebenfach "Organische Chemie") ; Mo, Fr 13.00-15.00 - Takustr. 3, Hörsaal (20.10.) Thomas Lehmann
Studiengände:
Bachelor Chemie (3. Semester)
Diplom Biochemie (3. Semster)
Diplom Chemie (4. Semester)

Leistungspunkte/Zeitaufwand:
2.0 LP, Vorlesung/Seminar: 15 x 2 Stunden
mit multimedialen Lehrmitteln (Experimente, Demonstrationen, Computerprogramme, Filme, Internet)

Überprüfung des Lehrfortschritts (während der Veranstaltung):
Aktive Teilnahme

Leistungskontrolle:
Die Leistungskontrolle erfolgt im Rahmen der drei Klausuren der Vorlesung "Organische Chemie II" (21202a). Die Fragen zur Arbeitssicherheit werden mit den übrigen Fragen gemittelt. Fragen zur Spektroskopie müssen für sich mit mindestens 50 % der möglichen Punkte aus dem gemittelten Ergebnis der Klausuren bestanden werden.

Zielsetzungen:
Die Teilnehmer sollen am Ende der Lehrveranstaltung in der Lage sein, 1-H-NMR-, IR-, UV- sowie einfache Massenspektren zu interpretieren. Sie sollen ferner gängige Laboroperationen sicher beherrschen, mögliche labortypische Gefährdungen kennen und erkennen sowie Maßnahmen zu deren Vermeidung treffen können.

Themenverzeichnis:
Spektroskopie
1-H-NMR-Spektroskopie
IR-Spektroskopie
Massenspektroskopie
UV-Spektroskopie

Arbeitssicherheit / Laborpraxis
Brandschutz
Aufbau von Apparaturen
Bedienung von Apparaturen und Laborgeräten
Laboroperationen
Behältnisse / Beschriftungen
Arbeitshygiene
Abfallbeseitigung
Recherchieren von Daten
Laborjournal / Protokolle
Struktursicherung
Rechtliche Grundlagen

Zusammenfassung der Lehrgegenstände:
1-H-NMR
Grundlagen der chemischen Verschiebung
Induktive, mesomere und anisotrope Effekte
Wichtige Werte für chemische Verschiebungen
Inkrementsysteme
Aufbau eines NMR-Spektrometers
Spin-Spin-Kopplung / Multiplizitätsregeln
Fernkopplungen
Wichtige Kopplungskonstanten
Karplus-Kurve
AX-, AB- und A2-Spinsysteme
D2O-Austausch
Integrale
Diastereotopieeffekt
Spektren höherer Ordnung

IR-Spektroskopie
Grundlagen elektromagnetischer Strahlung
Physikalische Grundlagen der IR-Absorption
Auswahlregeln
symmetrische und antisymmetrische Schwingungen
Nomenklatur von Valenz und Deformationsschwingungen
Bandenlagen wichtiger Schwingungen
Einflüsse der molekularen Umgebung auf Bandenlagen
Aufbau eines FT-IR-Spektrometers
Aufnahme von Feststoffen und Flüssigkeiten
Christiansen-Effekt

Massenspektroskopie
klassisches Funktionsprinzip des Massenspektrometers
Artefakte durch Gemische, Thermische Reaktionen oder Memory-Effekt
Fragmentbildung
Isotopenverteilung
Stickstoffregel
alpha-Spaltung
geradkettige, verzweigte und cyklische Kohlenwasserstoffe
aromatische Kohlenwasserstoffe / Tropyliumkation
McLafferty-Umlagerung
Halogenhaltige Verbindungen
Phenole und aromatische Amine
Oniumreaktion
Aromatische Nitroverbindungen
Carbonsäuren
Retro-Diels-Alder-Reaktion
mehrfach geladene Ionen
Mehrkernige Aromaten / typische Zerfallsprodukte des Fluorenylkations
Ionisierungstechniken
Spektrometertypen

UV-Spektroskopie
UV-aktive Elektronenübergänge
Fluoreszenz, Phosphoreszenz, Internal conversion
Aufnahme und Auswertung eines UV-Spektrums, Küvettentypen, Lambert-Beersches Gesetz
Farbenlehre
Nomenklatur von Bandenverschiebungen
Qualitative Spektrenvorhersagen
Auxochrome / Antiauxochrome
Solvatochromieeffekt

Arbeitssicherheit / Laborpraxis
Informationsbeschaffung zu Standorten und Gefährdungseigenschaften
Brandursachen und Brandbekämpfung
Einspannen von Apparaturen
Fetten oder nicht fetten von Schliffen
Gaseinleitungen
Dünnschichtchromatografie
Siedepunktsbestimmung
Arbeitsanweisungen für Abzüge, Exsikkatoren, Hebebühnen, KPG-Rührer, Kühlschrank, Magnetrührer, Refraktometer, Spektrometer, Pumpen, Rotationsverdampfer, Vakuumcontroller, Schütteltrichter, Sicherheitsschrank
Ab- und Umfüllen, Absaugen, Umkristallisieren, Trocknen
Behältnisse und Beschriftungen
Arbeitshygiene: Arbeitsplatz, Schutzkittel, Schutzhandschuhe
Desaktivieren gefährlicher Abfälle
Entsorgung verschiedener Abfallarten
Literaturrecherchen
Mischkreuz
Regeln zur Protokollanfertigung
Betriebstechnik
Chemikaliengesetz / Gefahrstoffverordnung / Technische Regeln
Unfallverhütungsvorschriften / Unfallkassen / Berufsgenossenschaften

Weitere Information:
 
21 202d
P -
Praktikum I: Organische Reaktionen und ihre Mechanismen (für Studierende der Chemie, Chemie mit Lehramtsoption und Biochemie sowie Studierende der Biologie mit Studienziel Diplom und nichtbiologischem Nebenfach "Organische Chemie") ; Anmeldung unter http://userpage.chemie.fu-berlin.de/~tlehmann/gp/anmeldung.shtml s. A. - Takustr. 3 (s. A.) Rainer Haag,
Christian Hackenberger,
Beate Koksch,
Hans-Ulrich Reißig,
Christoph Schalley,
Christian Stark,
Thomas Lehmann
u. Mitarb.
Anmeldung unter http://userpage.chemie.fu-berlin.de/~tlehmann/gp/anmeldung.shtml jeweils ab der letzten Woche der Vorlesungszeit des vorhergehenden Semesters.

Informationen zu Praktikumsbeginn und Öffnungszeiten siehe unter
http://userpage.chemie.fu-berlin.de/~tlehmann/gp/kontext.shtml

Angemeldete Studierende werden in eine Mailingliste aufgenommen, über die weitere aktuelle Informationen zum Praktikum gegeben werden.

Studiengänge:
Bachelor Chemie (3. Semester)
Diplom Biochemie (3. Semster)
Diplom Chemie (4. Semester)

Leistungspunkte/ Zeitaufwand:
Praktikum: 7.0 LP, 20 Stunden/Woche

Überprüfung des Lehrfortschritts (während der Veranstaltung):
Mündliche Prüfungen vor dem Versuchsbeginn,
Protokolltestate

Leistungskontrolle:
Mündliche Prüfungen vor dem Versuchsbeginn,
Bewertet werden Laborarbeit und Protokollanfertigung.
Kriterien für die Bewertung der Laborarbeit sind experimentelles Geschick, Organisation der Laborarbeit, Arbeitshygiene, gesamtverantwortliches und umsichtiges Denken und Handeln sowie der experimentelle Erfolg.

Zielsetzungen:
Es sind - je nach Schwierigkeit - ungefähr 8 Präparate nach Vorschrift anzufertigen. Die Vorschriften werden zur Verfügung gestellt und enthalten alle notwendigen Hinweise, um den Versuch sicher und sachgerecht durchzuführen. Der Schwierigkeitsgrad der Präparate wird nach Punkten gewichtet. Ein durchschnittliches Präparat erhält 4 Punkte. Insgesamt sind mindestens 32 Punkte zu erreichen. Überzählige Punkte können in das Praktikum II übertragen werden.

Themenverzeichnis:
Allgemeine Laboratoriumstechniken:
Zutropfen, Rückflusskochen, Destillieren bei Normaldruck und im Vakuum, Wasserdampfdestillation, Kugelrohrdestillation, Säulenchromatographie, Umkristallisation, sicheres Arbeiten mit Gefahrstoffen, insbesondere auch mit Giften.

Analytische Verfahren:
Aufnahme von IR- und UV-Spektren, Interpretation von IR-, NMR-, MS und UV-Spektren.
Dünnschicht- und Gaschromatogramme.

Für den theoretischen Hintergrund der durchzuführenden Reaktionen muss die Vorlesung 21202a (Organische Chemie II: Organische Reaktionen und ihre Mechanismen) entweder zeitgleich mit dem Praktikum oder vorher absolviert werden.

Zusammenfassung der Lehrgegenstände:
Die Teilnehmer sollen am Ende der Lehrveranstaltung in der Lage sein, Standard-Laborapparaturen sicher aufzubauen und zu betreiben. Die Teilnehmer sollen ferner lernen, sich den theoretischen Hintergrund der Versuche selbst anzueignen und kompetent darzulegen sowie die Versuchsdurchführung sachgerecht zu protokollieren. Den Teilnehmern sollen Gefährdungen durch Chemikalien und die dagegen zu treffenden Maßnahmen geläufig werden. Ferner sollen sie spektroskopische Grundkenntnisse (1-H-NMR, MS, IR, UV) erwerben.

Literatur:
Autorenkollektiv "Organikum"
M.Hesse, H.Meier, B.Zeeh "Spektroskopische Methoden der Organischen Chemie"

Weitere Information:
http://userpage.chemie.fu-berlin.de/~tlehmann/gp.shtml
E-Mail: tlehmann@chemie.fu-berlin.de
 
21 203a
V -
Organische Chemie III - Bioorganische Chemie ; Mi 8.00-10.00 - Takustr. 3, SR 26.07 (18.10.) Beate Koksch,
Christian Hackenberger
 
21 203b
Ü -
Übungen zu 21 203a ; Fr 10.00-11.00 - Takustr. 3, SR 34.16/17 (20.10.) Beate Koksch,
Christian Hackenberger
 
21 203c
P -
Praktikum II: Synthesemethoden ; Takustr. 3, s. A.
Anmeldung unter http://userpage.chemie.fu-berlin.de/~tlehmann/gp/anmeldung.shtml
jeweils ab der letzten Woche der Vorlesungszeit des vorhergehenden Semesters.

Informationen zu Praktikumsbeginn und Öffnungszeiten siehe:
http://userpage.chemie.fu-berlin.de/~tlehmann/gp/zeitplan6.shtml
(s. A.) Rainer Haag,
Christian Hackenberger,
Beate Koksch,
Hans-Ulrich Reißig,
Christoph Schalley,
Christian Stark,
Thomas Lehmann
u. Mitarb.
Hinweis Die Online-Vorlesungsverzeichnisse der hier aufgeführten Semester werden nicht mehr gepflegt. Deshalb kann es vorkommen, dass manche Funktionen und Links nicht korrekt funktionieren. Eine Suche ist nur noch über die sog. Listenausgabe möglich.
© Freie Universität Berlin